skip to main content


Search for: All records

Creators/Authors contains: "Bullock, James M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aslan, Claire (Ed.)
    Abstract The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel. 
    more » « less
  2. Societal Impact Statement

    Given the rapidly increasing drought and temperature stresses associated with climate change, innovative approaches for food security are imperative. One understudied opportunity is using feral crops—plants that have escaped and persisted without cultivation—as a source of genetic diversity, which could build resilience in domesticated conspecifics. In some cases, however, feral plants vigorously compete with crops as weeds, challenging food security. By bridging historically siloed ecological, agronomic, and evolutionary lines of inquiry into feral crops, there is the opportunity to improve food security and understand this relatively understudied anthropogenic phenomenon.

    Summary

    The phenomenon of feral crops, that is, free‐living populations that have established outside cultivation, is understudied. Some researchers focus on the negative consequences of domestication, whereas others assert that feral populations may serve as useful pools of genetic diversity for future crop improvement. Although research on feral crops and the process of feralization has advanced rapidly in the last two decades, generalizable insights have been limited by a lack of comparative research across crop species and other factors. To improve international coordination of research on this topic, we summarize the current state of feralization research and chart a course for future study by consolidating outstanding questions in the field. These questions, which emerged from the colloquium “Darwins' reversals: What we now know about Feralization and Crop Wild Relatives” at the BOTANY 2021 conference, fall into seven categories that span both basic and applied research: (1) definitions and drivers of ferality, (2) genetic architecture and pathway, (3) evolutionary history and biogeography, (4) agronomy and breeding, (5) fundamental and applied ecology, (6) collecting and conservation, and (7) taxonomy and best practices. These questions serve as a basis for ferality researchers to coordinate research in these areas, potentially resulting in major contributions to food security in the face of climate change.

     
    more » « less
  3. McConkey, Kim (Ed.)
    Abstract Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity. 
    more » « less
  4. Abstract Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption. 
    more » « less